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Abstract—For a sensor network to be reliable and useful, sensor
data must sustain high Quality of Information (Qol). While
Qol depends on many factors, the most crucial is the integrity
of sensor data sources themselves. Sensor data quality may
be compromised by causes such as noise, drifts, calibration,
and faults. On-line detection and isolation of such misbehavior
are crucial to assure high Qol for the end-user, and efficient
management of network resources. We describe a two-tiered
system for on-line detection of sensor faults. A local tier running
at resource-constrained nodes uses an embedded model of the
physical world with a hypothesis-testing detector to identify
potential faults and notifies a global tier. In turn, the global
tier uses these notifications for consistency checking among
sensors and provides more robust estimates for events of interest,
and also generates feedback to update the local models. We
demonstrate the performance of our system by investigating its
impact on the application Qol.'

I. INTRODUCTION

A sensor network is deployed to aid decision making to esti-
mate an event of interest. The event of interest is estimated or
calculated by a fusion module that aggregates the information
provided by various sensors within the network. The quality
of information provided by the network depends not only on
the fusion function, but also on knowing when a sensor is
misbehaving. A sensor may misbehave due to an inherent
failure or due to an inappropriate environmental condition [1],
[2]. We describe a two-tiered system for on-line detection of
sensor faults and hence positively impact the network Qol .

II. THE FORMULATION
The proposed framework is illustrated in Figure 1. Sensor
fault characterization is done at two tiers—a local tier and
a global tier. The local FDIR exploits high frequency data
available at the sensing node. As shown in Figure 1, the local
FDIR uses a model that assumes that the sensor responds
to changes in the measurand as a linear dynamical model
within a small time window 0 < t < T which is smaller
than the time constant of the “event” being tracked by the
network. The dynamics of the transducer response model is
determined by A, while v indicates the noise introduced in
the transducer. B is indicative of bias introduced in the sensor.
C is the calibration or the gain factor, while e signifies the
noise introduced by the sensor electronics.
p < {A,B,C,Q,R} defines the parameters for the
local sensor model. Sensor behavior (normal and faulty)
is described as labeled regions in this 5-dimension param-
eter space. Let pg <=  {Ao, Bo,1,Qo, Ro} defines
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Fig. 1. The proposed two-tier framework for sensor fault detection

baseline values for a no-fault sensor. The sensor FDIR
problem (block labeled 2 Figure 1) is a two-step pro-
cess of parameter estimation and hypothesis evaluation.

State 6p: Normal. Estimate R. Ho: R= Ro

State 6;: Noisy. Estimate Q. Hp: Q > q"

State 02: Frozen. Estimate Q. Ho:Q < ¢

State f3: Saturation. Estimate C. Hp : |C| > ¢!

State 64: Bias. Estimate B. Hop: B >b“,B< bt

State 6,: Unknown. None of the above
Algorithmically, baseline values p, are established using no-
fault data and the thresholds are expressed as a percent of
this baseline value. At each time 7' interval, the ith sensor
tier based on its measurements classifies the incoming signal
into one of pre-enumerated fault states 6 and this augmented
information is sent to the global tier.
The global fault detection (labeled 3 in Figure 1) may further
exploit the analytic and physical redundancy to augment the
local fault detection algorithm. The global tier also includes
a fusion module that estimates the event of interest F/ every
T interval of time. It fuses y;(¢) along with 6 ; from all
N sensors to calculate £ which is the event of interest. We
call this fault aware fusion . The estimated value E(T) is
then fed to an ideal sensor model S, which predicts what
the sensor reading should be given the event. This is a no-
fault ideal sensor prediction model. An optional module may
correct this predicted value to account for sensor location.
This value is provided as a feedback to the local tier as zg
for the next round of FDIR calculation.
Continuous feedback from the global tier to the local tier
formulates a predictor-corrector scheme wherein (1) a faulty
sensor is progressively isolated (2) a fault-aware fusion pro-



gressively discounts information provided by a fault sensor;
and (3) contributes positively towards network Qol.

III. APPLICATION

TABLE 1
APPLICATION SCENARIO PARAMETERS

[ Parameters | Application 1 Application 2

Source or Ground Truth:

Signal, E*(T) | 50 200 + 300 * (1 — e~ T/3)

Location | (2,2) (0,0)
Time period | 0 < T < 50 0<T<S8
Attenuation, ay 1/(1 + di) Tdiff = (Thot - Tamb)

—log(Tuszys)/(d2 + €2)

Prop. Delay, 7, | di/v (v = 344m/s) | n/a

Sensor Network:

Number | 4 10
Location | (1,1),(5,1),(5,5) (—5,27), (—10,18)
(175 ( ’ 2)7(17 14)1(_24)_9)
(~27,10), (~15,13), (25,9)
(—30,0), (12, 21)
Noise Var.os, 1,Vk 1,Vk
Fault Injection:
Sensor | 1 3
Type | Multiplicative bias Additive bias
Signature | 0.5,7 > 1 —4°C,30 < T < 50

A. Acoustic Event Detection

In this application, the affect of fault detection and event
detection coupling is studied. The scenario parameters are
listed in table 1. Location of sensors, source and source signal
are known while the time of event occurrence is unknown.
In the specific studied scenario, we have assumed one of
the worst cases where the closest sensor to the event has a
multiplicative bias of less than one (0.5). A local tier running
at nodes uses a Bayesian event detection hypothesis test along
a local fault detector. At each T, local tier detect faults
by checking the estimated parameters with their acceptable
bounds, as figure 2 shows, for sensor 1, parameter B doesn’t
stay in the acceptable bound, which shows the presence of
fault at it.
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After each T, global tier receives local detection decisions
along with fault notification. Global tier cross validates the
fault notifications and removes the faulty sensors from the
process of event detection for that time frame. In global fusion
of event detection different sensors have different weights,
the closer sensors have higher weights in fusion. The global
fault detector use the fault notifications and also distance

information to make a more robust final decision on event
detection. Final decision will be sent back to local tiers to
provide the initial state for the local models. As figure 3
shows for the whole scenario period (100 time units), event
occurs 3 times. Figure 3 shows our two-tiered architecture has
efficiently improved the event detection at presence of fault
and it showed that without that there is more chance to make
wrong decisions.

event detection decision

® reality
@ with No fault detection
@ with Fault Detection

no event

2 4 & g [

comparing decisions for different cases

Fig. 3.

B. Hot spot Intensity Estimation

In this application, the affect of fault detection and event
intensity estimation is studied. The scenario parameters are
listed in table I. Location of sensors, source and source signal
are known while the intensity of a hotspot is unknown.

Our task is to generates estimates for the hotspot intensity
E using the sensor network, once every minute. The fault
aware fusion function F is a 2D lookup table—which maps
the hotspot temperature with the average value provided by
all sensors in the network at time 7'. If the ith sensor was
detected to be misbehaving, we did not use it in the average
calculation. The ideal no-fault sensor model S = F~! and
hence the same x( is fedback from the global tier to each
local sensor FDIR model. The local FDIR model parameters
are calculated using 10 samples within each 1 minute window.
po parameters are established using measurements within the
first 7 minutes.
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Fig. 4. (A): Trace of Model coefficient B (B): Ground truth estimation
error with and without sensor FDIR

Figure 4(A) shows the trace of the model parameter B.
It clearly shows that the ‘sensor bias” fault hypothesis is
established between 30 — 50 minutes. Figure 4 that the
2-tier sensor FDIR framework consistently produces lesser
estimation error and consequently higher network Qol.

IV. CONCLUSIONS

The work presented in this short short paper shows some

initial results in using the 2-tier framework for detecting

sensor faults within a sensor network application.
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