
Simulation Framework for QoI Characterization of Sensor Networks
in the Presence of Faults

Marcin Szczodrak+, Sadaf Zahedi∗, Ping Ji+, Dinkar Mylaraswamy∗∗,
Mani Srivastava∗ and Robert Young∗∗∗

+City University of New York, NY USA,mszczodrak@gmail.com, pji@jjay.cuny.edu
∗University of California, Los Angeles, CA USA,{szahedi, mbs}@ee.ucla.edu

∗∗Honeywell, MN USAdinkar.a.mylaraswamy@honeywell.com
∗∗∗MoD, United Kingdomriyoung@dstl.gov.uk

Abstract—The quality of information delivered by a sensor
network depends heavily on the integrity of data produced by
the sensor nodes themselves. As such, the ability to model a
sensor networking application scenario in the presence of faults
that affect sensor data integrity is quite crucial. In this paper we
describe a sensor network simulation framework that provides
high fidelity modeling of sensor faults, and enables users tostudy
end-to-end quality of information. Our sensor fault simulator is
based on the popular, open-source simulator OMNet++ and the
associated Castalia package for modeling basic sensor network
behaviors. The framework provides the ability to model various
elements of a complete application scenario including node
deployment, physical process, sensor faults, fault detection, and
data fusion. This paper will describe the architecture of the
simulation platform, the novel sensor fault model for modeling
a variety of fault types and progressive failure behaviors in a
parameterized fashion, and the enhancements to Castalia with
integrated functionalities for fault detection.

I. I NTRODUCTION

A key goal of the NIS ITA is to develop a quantifiable
description of the quality of sensor-obtained informationin
support of decision making. Fundamental to this is an ability to
understand the impact of faults, miscalibrations, environmental
effects and other problems that afflict the integrity of data
returned by sensors upon the overall Quality of Information
(QoI) yielded by the sensor networks after fusing data from
different sensors. In order to gain such insight, we developed a
Sensor Fault Simulator (SFSim) with the ability to model the
impact of faulty sensor behavior on the Quality of Information
(QoI) for sensor networks. Our goal with this tool is to let
the user explore the performance and QoI in an application
scenario (i) under ideal conditions, (ii) in the presence of
various realistic sensor faults, and (iii) in the presence of fault
detection and repair processing.

To meet the goal of SFSim to inject faults and study
their impact on application QoI, we decided to use as the
foundation Castalia, an open-source sensor network simula-
tion package [2]. Castalia in turn sits on top of OMNet++
[1], an open-source free-for-research discrete event network
simulator. Castalia models the three components of a sensor
network, namely: wireless networking, physical world sensing,
and sensor nodes. Nodes in Castalia interact with a wireless
channel via a protocol stack, and with one or more physical
process, one for each sensing modality. Furthermore, the
platform characteristics are modeled via a Resource Manager,
which keeps track of relevant hardware state such as battery,
memory, CPU, and time. A user interested in modeling an
application scenario would draw upon a library of network

protocol, wireless channel, and physical process models, and
write a customized application module that would sense,
compute, and communicate. While Castalia is adequate for
modeling communication aspects of sensor networks, it lacks
the ability to model the complex physical processes that
underlie the application scenarios to be considered withinthe
ITA. Before this work Castalia had no provision for modeling
application scenarios in the presence of sensor faults, norany
support for fault detection and data repair functions within the
sensing module.

II. D ESIGN OF THESENSORFAULT SIMULATOR - SFSIM

There were two possible ways of implementing the func-
tionality we desired within SFSim. One approach would be
to incorporate all the functionality in Castalia itself: including
descriptions of new physical processes, models of faults, and
fault management framework. The problem with this approach
is the enormous amount of changes needed in Castalia, and the
difficulty of implementing sophisticated mathematical models
of sensors within Castalias C++ environment. Instead, the
alternative approach that we adopted was to keep physical
process and fault models outside Castalia in external tools
written using a suitable package (e.g. Matlab, Octave, R),
and generating trace files for play out by Castalia. Adopting
the second approach allows us to use the best tools for each
subcomponent and has greatly simplified the development of
the overall simulation environment.

Figure 1 shows the simulation framework that we are
creating, a prototype version of which is functional. The user
describes the various aspects of an application scenario using
simple text files, which are processed by a Matlab-based
Scenario Generation Tool. The aspects of the scenario that
this tool takes as input include:

1. Sources: this input describes the sources that generate
physical signals to be detected by the sensors. For each source
both a trajectory in space, and temporal evolution of various
physical signals emitted by it are described. A way-point
model has been instigated.

2. Sensors: this input describes the location of the various
sensor nodes, the signal modalities it can detect, and the
minimum detection threshold for each modality. Currently
sensors are assumed omni-directional, although we anticipate
to model directionally sensitive sensors in the future.

3. Terrain: this input describes the characteristic of the
terrain in terms of how the physical signals of a particular
modality propagate in space over time. Currently we support



Fig. 1. Scenario Simulation Environment with Fault Injection

a propagation model with signal strength decaying as inverse
of a distance power.

4. Fault Signature: this input specifies parameters of a
generic statistical fault model that we have designed to capture
many different types of faults encountered in real life.

5. Fault Evolution: this input specifies how the faults evolve
in time, using a progressive Markov model.

6. Hard Faults: this input specifies hard faults that affect
a sensing modality.

Using these inputs, the external tool generates trace files
that list for each sensor node the temporal evolution of the
signal detected at the location of the sensor node. Two types
of trace files can be generated. The first have no faults injected
and the traces represent the ground truth at the sensors based
purely on the measurement process. The second have faults
injected according to the fault model specified.

III. S IMULATION IMPLEMENTATION

For simulating the impact of sensor faults upon network be-
haviour, we have developed two key enhancements to Castalia.
The first is a special physical process that reads the sensor
value trace files produced by our scenario generator tool. Todo
this we have created a ReadTraceFilePhysicalProcess module,
which loads sensor traces generated by the external scenario
generator tool to Castalia. The traces taken to Castalia may
include only ground truth sensor values or contain various
faults drawn from the library of fault models that we designed
in the scenario generator. By this, we have assumed that sensor
faults are independent with the network application.

The second enhancement is a configurable fault detector
module that sits between the Sensor Device Manager and the
Application Module. This annotates and transforms the sensor
value time series according to user-specified fault detection
and fault repair methods. Over time we expect a rich library
of univariate sensor fault detection and fault repair algorithms
for the user to select from. At the present time we have
implemented simple algorithms including the basic functions
such as generating moving average values for smoothing.

We also implement a two-tier fault detection framework
within Castalia, in whichlocal sensor nodes (i.e., local tier)
are associated withsink nodes (i.e., global tier) where the
sensor data and fault information from local nodes are pro-
cessed at a central fusion point. Figure 2 depicts the fusion
node linkage intended within the two-tier framework.

We have modeled simple applications that utilize the two-
tier structure implemented in Castalia, in which we assume a

Fig. 2. Coordination between Two Tiers of Sensor Nodes

battle-ground scenario where acoustic and thermal sensorsare
deployed. The Application module of local nodes first receives
data passed from the Local Fault Detection manager, which
may or may not have applied a local fault detection method,
and transmits this data to the sink nodes. The sink nodes
then aggregate the gathered data, apply Global-information
based Fault Detection, and cleanse the data as necessary. The
scenarios that we have explored include: 1. Computing the
average and maximum values of a group of sensors; and 2.
Detecting if a transient event has occurred, and then determine
the location of the event. The following pseudo-code illustrates
the procedures followed by the sink nodes.
1. Data Aggregation
2. Fault Detection
3. Tag faulty data points as suspicious
4. Switch (Application Function)
5. Case1: Get Average
6. Compute Avg of non-suspicious data
7. Case2: Get Max value
8. Compute Max of non-suspicious data
9. Case3: Event Localization
10. If event occur
11. Locate event using all data points

The next step of this research is to develop complete
scenario evaluations using the sensor fault simulator. We will
evaluate the scenarios under three conditions: 1. none of the
sensors are faulty, 2. some of the sensors are faulty but there is
no fault checking and 3. fault detection modules are presentin
both local and global tiers to check for fault occurrence. These
future studies will demonstrate the worth of fault detection and
the results will be presented in a subsequent paper.

IV. ACKNOWLEDGMENT

Research was sponsored by the U.S. Army Research Labo-
ratory and the U.K. Ministry of Defense and was accomplished
under Agreement Number W911NF-06-3-0001. The views
and conclusions contained in this document are those of the
author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. Ministry
of 0 or the U.K. Government. The U.S. and U.K. Govern-
ments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
here on.

REFERENCES

[1] Omnet++ - discrete event simulation system. http://omnetpp.org.
[2] Online resource of castalia simulator. http://castalia.npc.nicta.com.au/.


