
Modeling and Implementation of
Energy Neutral Sensing Systems

Marcin K. Szczodrak
Columbia University

New York, NY
msz@cs.columbia.edu

Omprakash Gnawali
University of Houston

Houston, TX
gnawali@cs.uh.edu

Luca P. Carloni
Columbia University

New York, NY
luca@cs.columbia.edu

ABSTRACT
We present the modeling, implementation, and evaluation
of a single wireless sensor network that executes energy-
harvesting algorithms and sensing applications. The net-
work energy-management is modeled as a feedback control
system. An asynchronous execution of the energy-manage-
ment and the application processes is modeled as a finite
state machine. To evaluate our approach, we designed en-
ergy neutral sensing systems for two applications and imple-
mented them with Fennec Fox.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Distributed Systems

General Terms
Design, Modeling, Experimentation, Measurement

Keywords
Fennec Fox, Energy Neutral Sensing Network Systems

1. INTRODUCTION
Energy neutral sensing systems (ENSSys) achieve long-time
operation by combining energy-harvesting hardware with
software that regulates energy saving and spending. How-
ever, simply managing the energy resources is not the goal
in itself. These systems have primary responsibility to exe-
cute the Wireless Sensor Network (WSN) or Cyber-Physical
System (CPS) applications. Thus, there is an open research
question on how to design systems running both the target
applications, such as sensing and actuating, and the energy-
management algorithms that enable long-time execution of
these applications.

Despite advances inWSN research [2] and energy-harvesting
algorithms [23], there are still few examples of successful
technology transfers from research prototypes to actual com-
mercial products. One of the major challenges has been the
difficulty of realizing industry-level WSNs that can operate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

ENSSys’13, November 13 2013, Rome, Italy
Copyright 2013 ACM 978-1-4503-2432-8/13/11... $15.00.
http://dx.doi.org/10.1145/2534208.2534211

reliably for a long time with minimum energy and mainte-
nance cost while supporting sophisticated applications. To
address this problem it is necessary to develop methods for
designing and implementing WSN systems that can run ef-
fectively both application processes and energy-management
processes. Furthermore, these methods should enable design
and software reuse across various product deployments.

In this paper we present the modeling, implementation and
evaluation of a WSN running an energy-management system-
process and a sensor data collection application-process. We
show how the network energy-neutral operation can be mod-
eled as a feedback control system and implemented on the
Fennec Fox framework. Using the finite state machine (FSM)
model of computation, we show how to separate the exe-
cution of the system energy-management from the appli-
cation. This precludes a potential network communication
conflict between these two processes, and it enables design-
ing energy-management algorithms that are application ag-
nostic. We present two case studies to show that the pro-
posed system design and implementation methodology facil-
itates the composition of complex energy-harvesting systems
with improved run-time performance.

2. RELATED WORK
Energy-Harvesting. Recent energy-harvesting improve-
ments offer a spectrum of solutions to the problem of battery-
constrained WSN life-time [23]. For example, WSN motes
can be powered with solar energy [1, 3, 10] or by people’s
movement [7]. Motes can also communicate by reflecting
TV signals [16] or by harvesting energy from a tiny radioiso-
tope [22]. We apply some of these techniques to enable the
execution of sensing applications, which currently operate
on non-rechargeable batteries.

Energy Modeling. Modeling energy harvesting and con-
sumption plays a critical role in designing energy-neutral
systems. Real-life energy-harvesting traces [12] and power
consumption measurements [18] enable the creation of en-
ergy models. These models can be used to predict energy-
harvesting rates [9] and to run system simulations [17]. We
introduce a feedback control model combining both the en-
ergy-harvesting and the energy-management algorithms.

Energy-Aware Execution. Energy-neutral systems re-
quire careful operation that is constantly aware of its energy
resources. The network protocols use energy aware rout-
ing [15, 24] and newMAC protocols offer energy-conservation

primitives [4, 25]. There are new application development
methods for power-efficient sensing [11] and actuating [13].
We show that designing an energy-neutral system should
address both the system computation and communication
costs.

3. BACKGROUND: FENNEC FOX
We implement the energy-neutral sensing system models
based on Fennec Fox [19], an open-source framework for
the execution of multiple processes in a WSN. The run-
time framework execution of multiple processes is specified
at design-time by a domain-specific Swift Fox programming
language.

Swift Fox programs are used to model the execution of mul-
tiple processes across a network of low-power devices as a
FSM. Thus, the whole network has a notion of state. Each
state executes one or more processes. Transitions among the
network states schedule the execution of different processes
on the network motes. This resembles a typical model of
an operating system, which switches execution of multiple
processes on a single machine.

In Fennec Fox the same set of processes executes on all the
motes. These processes require communication services sup-
porting information exchange among the motes. Processes
may have different and sometimes conflicting communica-
tion requirements. For example, one process may require a
duty-cycled many-to-one data collection, and another pro-
cess may need a high-throughput one-to-one data stream-
ing [19]. To perform their duties, these two processes use
different network and MAC protocols and sometimes differ-
ent radio configurations. Because these two processes use
different communication protocols, they cannot execute on
the same network simultaneously. Fennec Fox solves this
problem by running these processes asynchronously and re-
configuring the whole network protocol stack.

Each Fennec Fox process is scheduled to execute on a ded-
icated four-layer protocol stack. The top layer of the pro-
tocol stack, called Application, runs the process code. For
instance, a process code might periodically sample a sensor,
compute the average of the last few samples, and send it
across the network. The Network layer runs the network
protocol (e.g. CTP [6] for data collection or Trickle [15] for
data dissemination) that provides the communication ser-
vice required by the Application layer code. The MAC layer
executes one of the available MAC protocols, such as CSMA,
TDMA, and their duty-cycled version. The Radio layer pro-
vides the driver code controlling a particular radio chip.

Fennec Fox processes are defined in a Swift Fox program.
In the program, each process must specify the application
code and list the network, MAC, and radio mechanisms that
support the application’s execution. The compiled program
is installed on the WSN motes. At run-time, as Fennec
Fox schedules the execution of a process across the network,
it also schedules the execution of the network and MAC
protocols together with the radio driver.

4. ENERGY-NEUTRAL SYSTEM MODEL
We define a feedback-control model for an energy-neutral
sensing system. Within this model we distinguish two types

ENSSys

Energy Mgmt Software

Target

Application(s)
(t)

(t)

(t)

PES

f((t), (t), t)
Θ(t)

Figure 1: Feedback control model of a system exe-
cuting application and energy-harvesting processes.

of processes: the application processes and the energy-man-
agement processes executing algorithms for sustainable en-
ergy-neutral network operation. The energy-management
processes generate additional network traffic by reporting
the motes’ energy harvesting and spending rates. Because
the application processes may require network communica-
tion protocols conflicting with those used by the energy-
management, we propose to asynchronously execute these
two types of processes.

Feedback-Control Model of Energy-Neutral System.
First, we define the ENSSys parameters. Let ∆(t) and δ(t)
be the energy consumed by all the motes and a single mote
at time t, respectively. Let Φ(t) and φ(t) be the energy
harvested by all the motes and a single mote, respectively.
Both ∆ and Φ represent the system continuous dynamics
controlled by the energy-management function f :

Θ(t) = f(∆(t),Φ(t), t) (1)

where Θ(t) represents the energy-related actuation signals
sent to the network and θ(t) denotes a single control signal
sent to one mote. This function provides a general model
of the energy-neutral system, whose operation is constrained
by the amount of energy consumed and the amount of energy
harvested by the motes at a given time.

Second, we define the ENSSys processes. Let P be the set
of processes that execute the target applications perform-
ing sensing, actuating, or computing. Let E be the set of
processes with algorithms managing energy-harvesting and
ensuring the energy-neutral operation. The whole system
consists of S processes, where S = {P ∪E}. During the EN-
SSys execution, a subset of these S processes is scheduled to
run across the network.

With the defined ENSSys parameters and processes, we com-
pose a feedback control model for sustainable energy-neutral
operation. Fig. 1 shows the energy-management processes E
receiving signals Φ(t) and ∆(t). The control function f com-
putes the actuation signals Θ(t) which impact the execution
of the target applications P . The execution of the P ap-
plications across the network consumes energy at ∆(t) rate,
which is the input parameter to the energy-management pro-
cesses.

Sensing and Actuation of Energy Harvesting. In the
presented feedback-control model, the energy-management
processes E require the following two mechanisms:

1. Energy Harvesting Sensing (EHS): reports the energy-
harvesting rate Φ(t).

2. Energy Harvesting Actuation (EHA): applies the
energy control signal Θ(t) computed by the function f .

These two mechanisms can be implemented as a single or

multiple processes. For example, in one energy-management
approach, every mote individually monitors its energy re-
sources and adapts its work accordingly [8]. Here, both EHS
and EHA may run as a single process. In a different work,
motes exchange their energy status [24], which requires sep-
arate processes for executing EHS and EHA, because they
have different communication requirements for energy sens-
ing and actuating.

Energy Harvesting Communication Requirements.
Depending on how and where the ENSSys parameters are
computed and sent, the energy-management has one of the
following network communication characteristics:

• Local: - On each mote individually, EHA computes the
actuation signals based on the EHS reports from its own
mote. The actuation signals only affect the mote itself.

• Neighborhood: - EHS and EHA processes exchange
their messages among the motes in the neighborhood. For
instance, a mote may broadcast its energy-harvesting sta-
tus φ(t) and adapt its operation according to the informa-
tion Φ(t) received from other motes.

• Global-Distributed: - Both EHS and EHA algorithms
run on all the motes and exchange Φ(t) and ∆(t) across
the network to collectively compute the energy control
decisions Θ(t).

• Global-Centralized: - EHS sends both the Φ(t) and
∆(t) across the network to the central node. After cen-
trally computing Θ(t), EHA sends θ(t) to all the motes in
the network.

These different network characteristics of the energy-mana-
gement processes might be conflicting with the network traf-
fic generated by the target applications. For example, an
energy-management process may require CSMAMAC, while
the target application may require TDMA MAC. But these
two MAC protocols cannot effectively coexist together in the
WSN at the same time.

Scheduling Energy Management Processes. To design
and implement a single network with the energy-management
E and the target application P processes, we propose to
schedule their execution asynchronously. This separate ex-
ecution is mandatory when the energy-management algo-
rithms and target applications have conflicting communica-
tion specifications. When there are no communication con-
flicts, we still may design ENSSys with the asynchronous ex-
ecution of the energy-management and the application pro-
cesses for the following reasons:

1. Preventing degradation of E and P processes execution
by isolating their network communication traffic.

2. Improving the energy-harvesting and consumption esti-
mates by computing f without executing the target ap-
plications at the same time.

3. Decoupling E from P to enable modular system design
and to reuse the E processes with other P .

We apply the FSM model of execution supported by the
Fennec Fox framework to asynchronously run the energy-
management and target application processes. In the Swift
Fox programming language, we map the processes with the
conflicting communication requirements into separate FSM
states. Then, we create state transition events so that the

WSN APPLICATION

PROCESS
ENERGY MANAGEMENT

PROCESS

WSN APPLICATION

NETWORK PROTOCOL

FOR WSN APP

MAC PROTOCOL

FOR WSN APP

RADIO DEVICE

FOR WSN APP

ENERGY-HARVESTING

MANAGEMENT

NETWORK PROTOCOL

FOR EH-MGMT

MAC PROTOCOL

FOR EH-MGMT

RADIO DEVICE

FOR EH-MGMT

NETWORK

CONTEXT-SWITCH

APPLICATION

LAYER

NETWORK

LAYER

MAC

LAYER

RADIO

LAYER

APP1
APP2EHA APP3

Δ(t) Φ(t)

Δ(t)

PE
Θ(t)

Θ(t)

EHS

Figure 2: WSN context-switch between the applica-
tion and the energy-management processes.

system only runs either the energy-management processes
(and switches the execution among E processes) or runs the
target applications (and switches the execution among the
P processes).

Fig. 2 illustrates how we map the feedback control model of
the energy-neutral system into a FSM that is programmable
in Swift Fox and executable by the Fennec Fox framework.
In this example, the FSM has four states: two for EHS

and EHA energy-management algorithms and two states
for the three target applications denoted as APP∗. APP1
and APP2 run concurrently within the same state while
APP3 runs in a separate state with its own network stack.
The transitions from the states running P processes to the
states running E processes ensure that the up-to-date con-
trol inputs ∆(t) and Φ(t) are made available to the system
energy controller. The transitions from the states with E

processes to the states with P processes set the target ap-
plications to run with the most recent energy control signals
Θ(t).

5. CASE STUDIES
We present two cases studies to evaluate our approach. The
first case study shows the energy-management processes exe-
cuting asynchronously with the application processes on the
same WSN. The second case study applies the existing Fen-
nec Fox mechanisms to achieve run-time system adaptation
based on the energy-harvesting rate.

5.1 Adapting workload to residual energy
We run a simulated replication of the WSN habitat mon-
itoring study [21]. In this application, sensor nodes were
deployed outdoor to collect climate information about sun-
light, humidity, air pressure, and temperature. In the origi-
nal deployment, the key engineering challenge was to set the
sensor sampling rate so that the network would operate for
a sufficient period of time. We address this problem by us-
ing solar cells. In particular, we construct a sensing system
where the sensor sampling rate Θ(t) is dynamically adjusted
to the amount of the available energy.

Energy-Harvesting Software. The application sensing
rate Θ(t) is computed by the control function f as the dif-
ference between the rate Φ(t) at which energy is harvested
and the rate ∆(t) at which energy is consumed by the sens-
ing application:

Θ(t) = f(∆(t),Φ(t), t) = C(Φ(t)−∆(t)) (2)

where C is the signal control scaling parameter. For exam-
ple, for C < 1 the controller sets the application consump-
tion rate below the energy-harvesting rate. Fig. 3 shows the

C

Energy-Harvesting Software

Δ(t)

Φ(t)

Δ(t) Θ(t)
Sensing:

 rate = Θ(t)

Habitat Monitoring

Figure 3: Feedback control model where sensing rate
is adjusted to the energy-harvesting rate.

T��� � 5 SEC

TIME = 5 MIN

HabitatMonitor

Sense

CTP

CSMA

CC2420

Monitoring
EHS EHA

EHS

CTP

CSMA

CC2420

EHA

TRICKLE

CSMA

CC2420

EnergyMgmt

Figure 4: Fennec Fox modeling execution of the ap-
plication and the energy-management processes.

feedback control model of the WSN for the habitat monitor-
ing. The energy-management function f is computed by the
Energy-Harvesting Software, and its output Θ(t) is sent as
a sensing rate parameter to the Habitat Monitoring process.

To implement the modeled system, we specified the commu-
nication characteristics of the energy-management software.
In particular, we defined the communication mechanisms
that deliver the energy harvesting and spending rates as
the inputs to the function f , and then transmit the com-
puted sensing rate back to the motes. Specifically, from
Section 3 we chose to compute the energy-management cen-
trally. Therefore, the network has the Global-Centralized
communication characteristics, with:

• EHS collecting information about the energy-harvesting
rate Φ(t) at the central system.

• EHA computing f and disseminating Θ(t) to all the nodes
in the network.

These communication characteristics demand the following
network protocols. The EHS many-to-one data collection
requires a protocol such as CTP [6], with the Φ(t) data from
all the motes sinking at the central system node. The EHA
one-to-many data dissemination needs a protocol such as
Trickle [15], with the Θ(t) data announced by the central
system node to all the motes in the network.

Fennec Fox Model and Swift Fox Program. We imple-
mented the habitat monitoring as an application executing
on the Fennec Fox framework [19]. To control the applica-
tion’s sensing rate, every 5 minutes the network switched
to execute the energy-management processes. Fig. 4 shows
two network states: Monitoring - for the execution of the
HabitatMonitor protocol stack with the Sense application,
and EnergyMgmt - consisting of two protocol stacks running
the EHS and EHA software1.

Fig. 5 shows the Swift Fox program specifying the asynchro-
nous execution of the application and the energy-management
processes, together with their supporting communication

1Although both the EHS and EHA processes require dif-
ferent protocol stacks, they can run concurrently, because
the Θ(t) dissemination occurs after the Φ(t) data collection,
without network communication conflicts.

 1 # Shared variables

 2 uint8_t rate = 0
-

 3 # Stack Configurations: conf <conf_d> {<app> <net> <mac> <radio>}

 4 conf HabitatMonitor { sense(rate, NODE, 2) ctp(2) csma() cc2420()}

 5 conf EHS {ehs(113) ctp(113) csma(0, 1, 1) cc2420()}

 6 conf EHA {eha(rate) trickle() csma(0, 1, 1) cc2420()}
-

 7 # States: state <state_id> [priority level] { <conf_id> ... }

 8 state Monitoring L3 {HabitatMonitor}

 9 state EnergyMgmt L1 {EHS EHA}
-

10 # Events: event <event_id> {<source> <condition> [scale]}

11 event CheckEnergy {timer = 5 min}

12 event TimeOut = {timer = 5 sec}
-

13 # Policies: from <state_id> to <state_id> when <event_id>

14 from Monitoring goto EnergyMgmt when CheckEnergy

15 from EnergyMgmt goto Monitoring when TimeOut
-

16 # Definition of the initial state: start <state_id>

17 start Monitoring

Figure 5: Program of the system from Fig. 4.

protocols. We verified the correct execution of the appli-
cation and the energy-management software by compiling
and executing the Swift Fox program on a testbed built
with the Open Testbed Framework [20] and running Zol-
ertia Z1 motes. Because those motes do not provide any
energy-harvesting capabilities, we used a simulator to con-
duct WSN energy-management studies.

Simulation. We used the TOSSIM [14] simulator that al-
lowed us to simulate the same code that runs on the target
hardware (e.g. Zolertia Z1), with the exception of the radio
driver. We extended TOSSIM to support simulation of the
solar energy by accessing real-life traces of the irradiance
logs from the Humboldt State University in Arcata, Califor-
nia [12]. We developed a simulation interface to configure
the energy-harvesting parameters2 and to define the sim-
ulated energy consumption models according to the power
consumption reports [18]3.

We compared the performance of the energy adaptive system
against three naive energy-management strategies. The first
strategy, called Aggressive, runs with a high-fixed sensing
rate of 1Hz. The second strategy, Conservative, has a low-
fixed rate of one sample every 8 seconds but ensures 24-hour
operation. The third strategy has a scheduler, which during
the day time hours (10:00-13:10) samples aggressively and
otherwise conservatively. Our proposed Adaptive strategy
computes the actuation signal Θ(t) according to the function
f from Eq. 2, with C = 1.01. This strategy dynamically
adapts the sensing rate to the energy-harvesting rate and is
programmed according to the Fennec Fox model from Fig. 4.

Experimental Results. Fig. 6 shows the experimental re-
sults comparing the four energy-management strategies over
the same 24-hour irradiance data trace. Table 1 reports the
aggregate metrics covering the entire experiment. Two met-
rics of particular interest are the average rate at which the
habitat monitoring application attempts to sample sensors
and transmit a message, and the percentage of times when
at the given sampling rate there is enough energy to run the
application.

2In the experiments, we set the solar cell area to 1x2cm, cell
efficiency to 20%, and the battery capacity to 400J.
3Application sensing and transmitting costs 33mJ, otherwise
on average a mote consumes 0.15mJ.

4:00 8:00 12:00 16:00 20:000.0
0.2
0.4
0.6
0.8
1.0

Sa
m

p.
 R

at
e

(H
z)

Aggressive (every 1 second) Sampling Rate (Hz)
Residual Energy (J)

0
100
200
300
400

En
er

gy
 (J

)

4:00 8:00 12:00 16:00 20:000.0
0.2
0.4
0.6
0.8
1.0

Sa
m

p.
 R

at
e

(H
z)

Conservative (every 8 seconds)

0
100
200
300
400

En
er

gy
 (J

)

4:00 8:00 12:00 16:00 20:000.0
0.2
0.4
0.6
0.8
1.0

Sa
m

p.
 R

at
e

(H
z)

Scheduled (10:00-13:10)

0
100
200
300
400

En
er

gy
 (J

)

4:00 8:00 12:00 16:00 20:000.0
0.2
0.4
0.6
0.8
1.0

Sa
m

p.
 R

at
e

(H
z)

Adaptive (check every 5 mins)

0
100
200
300
400

En
er

gy
 (J

)

4:00 8:00 12:00 16:00 20:00
Time (24 hours)

0
200
400
600
800

1000

Irr
ad

ia
nc

e
(W

/m
2)

0
100
200
300
400
500
600
700

To
ta

l E
ne

rg
y

(J)

Figure 6: Performance of the solar-cell-based energy
harvesting and management strategies.

Strategy Avg. Samp.
Rate (Hz)

Total
Packets

Sampling
Success (%)

Aggressive 0.243 21006 24.3
Conservative 0.125 10800 100
Scheduled 0.240 20775 100
Adaptive 0.241 20885 100

Table 1: Energy-management experimental results.

From the experimental results we observe that the Aggres-
sive strategy spends energy as soon as the motes harvest it.
Only during the middle day hours the battery gets charged
up to 3.3 J. When sampling every second, only 24.3% of the
time the motes have sufficient energy resources to complete
sensing and transmitting. This yields the average successful
sampling rate of 0.243 Hz. In particular, as soon as the day
ends, the motes stop working and are not operational until
the beginning of the next harvesting period. The Conser-
vative strategy achieves 100% successful sensing and trans-
mitting, with a low 0.125Hz sampling rate. During the mid-
dle hours of the day, this strategy is missing the available
energy-harvesting resources, because the battery reaches its
maximum capacity. The Scheduled strategy operates within
the limits of the harvested energy, transmitting just 231 less
reports than the Aggressive strategy, while successfully op-
erating for all the time. However, to achieve this Scheduled
strategy results, we had to run an off-line brute-force pa-
rameter optimization to determine when to switch between
the two sampling rates. Finally, the Adaptive strategy has
a higher average sampling rate than the Scheduled strategy
and is transmitting only 0.99% less reports than the Ag-
gressive strategy. Further, the Adaptive strategy sustains a
continued sensing and transmitting operation, without re-
quiring off-line schedule optimization and is agnostic to the
energy-harvesting rate.

5.2 Adapting execution to residual energy
For the second case study, we considered the energy-harvest-
ing active network tags [8]. The tags run on the energy
harvested from the indoor-deployed solar cells and transmit
messages over a prototype of an ultra-wideband impulse ra-
dio. Our goal is to understand how such system would per-

ENERGY > 4.4 mJ

ENERGY < 3.3 mJ

Switch

SWITCH

BROADCAST

LEAF

CC2420

Harvesting
MotionMonitor Switch

BROADCAST

LEAF

CC2420

SWITCH

BROADCAST

LEAF

CC2420

Charged

OCCUPANCY

Figure 7: Fennec Fox scheduling execution of pro-
cesses according to the level of the harvested energy.

form with a low-power radio already available on the market.
For example, a similar energy-harvesting method was used
in the leaf-to-branch communication approach [25], with the
CC2420 radio on the Epic Core motes [5]. In the following
experiments, we run two applications on the active network
tags. The first application is called Switch. Once a tag is
pressed, this application sends a broadcast message request-
ing to turn on the light. The second application, Occupancy,
broadcasts the motion’s sensor measurement, every minute.

Energy Spending and Harvesting. We design two sim-
ulation experiments with the network tags running the two
applications. In the first design, we let both applications to
run concurrently until they consume all the available energy
resources. In the second design, we prioritize the Switch ap-
plication over the Occupancy one and ensure that during the
night hours there is enough energy to press the light switch
and turn on the light for at least 10 times.

In the experiment, we use the indoor solar energy-harvesting
model [9]4 and derive the indoor irradiance traces from the
outdoor ones5. Following the energy consumption reports [18],
we define the energy-management function f :

θ(t) = f(δ(t), t) =

{

0 if δ(t) < 3.3 mJ

1 if δ(t) > 4.4 mJ
(3)

where the output value θ(t) specifies if there is enough en-
ergy resources to run the Occupancy application, while se-
curing the energy for 10 Switch application executions6.

Fennec Fox Implementation and Simulation. We use
the Fennec Fox energy-based events to trigger a context-
switch between the following two states. The Charged state
runs with the two application processes. The Harvesting

state only executes the Switch application. Fig. 7 shows
the FSM model of the system switching between those two
states. Here, the context-switch is driven by the energy-
management function f from Eq. 3, thus the system state
depends on the residual energy level.

To minimize the broadcast message power consumption, both
applications use a low-power MAC protocol. This proto-
col, called Leaf, follows the leaf-to-branch communication

4The solar cell area is 1x2cm and the cell efficiency is 1%.
5Because indoor solar energy levels are 1 to 3 orders of mag-
nitude lower than the outdoor once [9], we divide the outdoor
traces [12] by 100.
61 second of sensing consumes 0.015mJ. A message broad-
cast requires 0.2mJ. A single Switch transmission consumes
0.2mJ. Fennec Fox state reconfiguration overhead is 0.19mJ.
1 minute of running Occupancy needs 1.1mJ. A tag stops
sensing when the energy is less than 3.3mJ. A tag starts
sensing when the energy is more than 4.4mJ.

4:00 8:00 12:00 16:00 20:00

se
ns

in
g

tim
es w/o energy reservation

No energy reserved

Occupancy Sensing Moments

Residual Energy

0
1
2
3
4
5

En
er

gy
 (m

J)

4:00 8:00 12:00 16:00 20:00

se
ns

in
g

tim
es with energy reservation

0
1
2
3
4
5

En
er

gy
 (m

J)

Reserved Energy for Switch Application

4:00 8:00 12:00 16:00 20:00
Time (24 hours)

0
2000
4000
6000
8000

Irr
ad

ia
nc

e
(m

W
/m

2)

0
50
100
150
200
250
300
350

To
ta

l E
ne

rg
y

(m
J)

Figure 8: Energy reservation for process execution.

model [25]. Before sending a message, Leaf checks that the
radio is turned on and that there are no other ongoing trans-
missions. Once a message is sent, the radio is turned off until
the next transmission.

Fig. 8 shows the simulation results of the two system de-
signs executing the Switch and Occupancy applications. In
the upper graph, the system concurrently executes both ap-
plications. In the middle graph, the system reserves the en-
ergy resources for executing the Switch application, as in the
model from Fig. 7. The bottom graph reports the irradiance
measurements and the available total energy resources.

The experimental results show the tradeoffs between the two
system designs. In the upper graph, the Occupancy appli-
cation sent 387 sensor reports between 6:48am and 6:55pm,
when it depleted all the energy resources. In the middle
graph, the Occupancy application sent, during the 49 min-
utes shorter period, 356 reports, only 0.92% less than the
system without reserving energy for over-the-night Switch

execution. The system switched between the Charged and
Harvesting states 138 times, with Fennec Fox consuming
27.6mJ.

6. CONCLUSIONS
We analyze the problem of combining into a single wireless
sensor network (WSN) both the energy-harvesting software
algorithms and the applications collecting sensor measure-
ments. First, we introduce the models of computation for
the energy-management software and for scheduling the ex-
ecution of multiple processes on the same WSN. The net-
work energy-management is modeled as a feedback control
system. The distributed multiprocessing is based on the
Fennec Fox finite state machine model of computation.

We demonstrate the system design and implementation meth-
odology on two WSN applications. The first application ad-
justs the sensing rate according to the rate at which the
energy is consumed and harvested. The second example
presents two applications with different execution priori-
ties. The lower-priority application runs only when there are
enough energy resources to ensure the execution of the high-
priority application. These examples show energy-neutral
sensing systems with energy managed by following a feed-
back control model, programmed in Swift Fox and executed
by the Fennec Fox framework.

Acknowledgements: This project is partially supported by the
National Science Foundation under Award #931870 and by an
ONR Young Investigator Award. Omprakash Gnawali was partly
supported by a generous gift from Cisco.

7. REFERENCES
[1] Y. Afsar et al. Evaluating photovoltaic performance indoors. In

Proc. of the Photovoltaic Specialists Conf., pages 1948–1951,
June 2012.

[2] D. Culler, D. Estrin, and M. Srivastava. Guest editors’
introduction: Overview of sensor networks. Computer,
37:41–49, Aug. 2004.

[3] P. Dutta et al. Trio: enabling sustainable and scalable outdoor
wireless sensor network deployments. In Proc. of the IPSN
Conf., pages 407–415, Apr. 2006.

[4] P. Dutta et al. A building block approach to sensornet systems.
In Proc. of the ACM SenSys Conf., pages 267–280, Nov. 2008.

[5] P. Dutta et al. Wireless ACK collisions not considered harmful.
In ACM HotNets Work., Oct. 2008.

[6] O. Gnawali et al. Collection tree protocol. In Proc. of the ACM
SenSys Conf., pages 1–14, Nov. 2009.

[7] M. Gorlatova et al. Movers and shakers: Kinetic energy
harvesting for the internet of things. CoRR, abs/1307.0044,
2013.

[8] M. Gorlatova et al. Prototyping energy harvesting active
networked tags (EnHANTs). In Proc. IEEE INFOCOM’13
mini-conference, pages 585–589, Apr. 2013.

[9] M. Gorlatova, A. Wallwater, and G. Zussman. Networking
low-power energy harvesting devices: Measurements and
algorithms. In Proc. IEEE INFOCOM’11, pages 1602–1610,
Apr. 2011.

[10] A. Hande, T. Polk, W. Walker, and D. Bhatia. Indoor solar
energy harvesting for sensor network router nodes.
Microprocessors and Microsystems, 31(6):420–432, 2007.

[11] V. Jelicic et al. Context-adaptive multimodal wireless sensor
network for energy-efficient gas monitoring. Sensors Journal,
IEEE, 13(1):328–338, Jan. 2013.

[12] N. R. E. Laboratory. Measurement and instrumentation data
center. [Online] http://www.nrel.gov/midc/hsu/.

[13] S. P. Lau, G. Merrett, and N. White. Energy-efficient street
lighting through embedded adaptive intelligence. In Proc. of
ICALT Conf., pages 53–58, May 2013.

[14] P. Levis et al. TOSSIM: accurate and scalable simulation of
entire TinyOS applications. In Proc. of the ACM SenSys
Conf., pages 126–137, Nov. 2003.

[15] P. Levis et al. Trickle: A self-regulating algorithm for code
propagation and maintenance in wireless sensor networks. In
Proc. of the NSDI Symp., pages 15–28, Mar. 2004.

[16] V. Liu et al. Ambient backscatter: wireless communication out
of thin air. In Proc. of the ACM SIGCOMM, pages 39–50,
Aug. 2013.

[17] A. Seyedi and B. Sikdar. Modeling and analysis of energy
harvesting nodes in wireless sensor networks. In Proc. of
Communication, Control, and Computing Conf., pages 67–71,
Sept. 2008.

[18] V. Shnayder et al. Simulating the power consumption of
large-scale sensor network applications. In Proc. of the ACM
SenSys Conf., pages 188–200, Apr. 2004.

[19] M. Szczodrak, O. Gnawali, and L. P. Carloni. Dynamic
reconfiguration of wireless sensor networks to support
heterogeneous applications. In Proc. of IEEE DCOSS Conf.,
pages 52–61, May 2013.

[20] M. Szczodrak, Y. Yang, D. Cavalcanti, and L. P. Carloni. An
open framework to deploy heterogeneous wireless testbed for
cyber-physical systems. In Proc. of the IEEE SIES Symp.,
pages 215–224, 2013.

[21] R. Szewczyk et al. Habitat monitoring with sensor networks.
Commun. ACM, 47(6):34–40, June 2004.

[22] S. Tin and A. Lal. Saw-based radioisotope-powered wireless
rfid/rf transponder. In Ultrasonics Symposium, pages
1498–1501, Oct. 2010.

[23] A. S. Weddell et al. A survey of multi-source energy harvesting
systems. In Proc. of the DATE Conf., pages 905–908, Mar.
2013.

[24] Y. Wu and W. Liu. Routing protocol based on genetic
algorithm for energy harvesting-wireless sensor networks.
Wireless Sensor Systems, IET, 3(2):112–118, July 2013.

[25] L. Yerva et al. Grafting energy-harvesting leaves onto the
sensornet tree. In Proc. of the IPSN Conf., pages 197–208,
Apr. 2012.

