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Abstract—A sensor network comprises a collection of sensor
nodes that can measure characteristics of their local environment,
perform certain computations, and transmit the measurement
result, typically in a collaborative fasshion, to an external data
collection point for data processing and storage. The collected
measurement result however often contain erroneous data due
to inevitable system problems involving various hardware and
software components ranging from the sensor device for data
collection, to computation device for data fusion and processing,
to communication device for data transmissions. Such “dirty
data” are expected to be sporadic. In this research, our objective
is to detect and repair such dirty data. Our approach is to
leverage on the intrinsic redundancies and correlations among the
collected data, as information about a single event of interest in a
sensor network is usually reflected in multiple measurement data
points. This data correlation can exhibit temporally, spatially, and
across different data types. The inconsistency among multiple
sensor measurements serves as an indicator for data quality
problem. Furthermore, by carefully constructing a data model,
we may be able to correct the dirty data in that data produced
by one data source can serve as an error correction code for
others. The focus of this paper is therefore to study methods
that can effectively identify and correct errorneous data among
inconsistent observations based on the correlation structure of
various sensor measurement series. We propose a multivariate
model to achieve this goal.

I. A MULTIVARIATE MODEL FOR OUTLIER DETECTION

A. Identify Correlated Data Groups

In this study, our goal is to utilize spatial, temporal or other
types of data redundancies among sensors to identify and re-
pair dirty data. To discover the correlation structures, we need
to first classify potentially correlated sensors into groups. For
instance, in a sensor network presented by Intel Berkeley Lab
[1] as shown in Figure 1, for which we will discuss in further
detail in Section II, the sensor nodes can be grouped together
base on their regional relationship, and each sensor can be
classified into multiple regions (i.e., groups). However, for
different sensor network applications the correlation structure
of sensor nodes can be varied and more complicated than sim-
ple geographic classification. Nonetheless, regardless of sensor
node grouping method, the correlation based data cleansing
model that we propose in this paper can be applied to many
sensor network with correlated sensor nodes being grouped
together base on application-specific correlation structure.

B. Dirty Data Detection
Our first objective is to detect whether potential data prob-

lem has occurred at a particular time within the data collected

from a chosen group of sensor nodes. To accomplish this,
correlated error structure among multiple sensors should be
captured. We thus describe a multivariate error model as the
following. We assume the sensor data processes used to obtain
covariance structure are in steady-state. We further define that
the measured data of time

�
of a sensor node � is ������ , and

the true value of the measurement point is � ��� . Here, the error
sequence of the time series model for the measurements of
sensor � can be denoted as�
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Various error forecast models can be utilized here to capture� �� . We adopt a simple moving average, MA(q), model in which� �� is assumed normally distributed and follows�
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At each time

�
, therefore, an error vector can be constructed

as % � �'& � ��)( �+*�)( �,� � ( �
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with 0 being the number of sensors in the chosen group.

To detect problematic time point in a sensor group, we
choose to use steady-state measurement data points as the
training data sequence to obtain multivariate covariance for
later outlier detection. We define the multivariate error at time�

as 1 � � % ��243 ��� 2 %65� (4)

in which, 7 � is defined in Equation (3), and 8 is the
covariance matrix of error sequences as shown below
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In Equation (5), � �
represents the error vector of sensor � .

Specifically, � �HGJI � � K)L � �M/L!NON�NOL � �P'Q
with R being the number

of data points from sensor � that are used for training the
multivariate covariances. Further, covariance matrix 8 can be
estimated by: S� 	 �UTV 5W X?Y � �C	X (6)

and
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After obtaining the multivariate error sequence of ] � , we com-
pare ] � with ^ M

distribution with a threshold _ to detect outlier.
Specifically, if ] � Q ^ Ma` 0 L _cb , it is determined that potential
dirty measurement exists in data vector de�� K � L �� M � L!NON�NOL ���f �hg at
time

�
.



Fig. 1. Intel Berkeley Lab Sensor Network

C. Dirty Data Identification

The multivariate error presented in Equation (4) can only
be used to detect the existance of dirty data in a group of
sensors at a given time. However to identify whether a specific
sensor is producing erroneous measurement, we need to further
examine each sensor record individually. By assuming dirty
data are sparse, that is to assume that in one sensor group at
one time there is only one sensor reports dirty data, we may
evaluate the worst sensor measurement produced at time

�
by

iteratively deriving a modified multivariate error, ]ji �lk� , which
excludes the data entry of sensor � that is under investigation.
Specifically, we define1Hm 	ln� � %om 	�n� 243 m 	ln ��� 2 %pm 	ln� 5 ( (8)

in which 7qi �[k� and 8 i �[k
are 7 � and 8 except for the � -th

element respectively. That is,% m 	ln� �r& � �� ( � � � ( �C	 ���� ( �C	�s �� ( � �,� ( � -� . (9)

and
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By iteratively evaluating ] i �lk� over �vu�d�w L\xyL!NONON�L 0 g for

any time
�

where multivariate error is detected, a sensor z
that generates the minimum ]{i �lk� can be identified, which
indicates ���| � is a dirty data point. Here, it should be noticed
that a sensor node can be classified into multiple measurement
groups, therefore its measurement may be detected dirty
multiple times in one period. This information is useful to
enhance the confidentiality of dirty data detection, or to justify
whether the error detection itself is biased.

II. PERFORMANCE EVALUATION
In our evaluation, we choose to use the data traces collected

from a sensor network built at Intel Berkeley Research Lab
shown in Figure 1. During this measurement study [1], 54
Mica2Dot sensors were monitored over a 37-days period,
with humidity, temperature, light and voltage values being
recorded periodically at each sensor. The data was collected
using TinyDB in-network query processing system built on the
TinyOS platform.

After examining measurement traces of the Intel Berkely
Lab sensors, we observe that data readings in the traces do
not always align with sampling intervals (30-31 seconds), and
missing data were found both sporadically and in continuous

blocks. Therefore, we prepare the data by constructing equal
length discrete time series for each node. Specifically, we
process the following three steps for each sensor trace:

1. Group sensor data into fixed length bins (e.g., 1 minute);
2. If multiple data points are classified into one bin, take

the average of the data values as the value in that bin;
3. If a bin is empty, fill it by time series forecast such as

simple MA-1 model which uses the previous available
data point as the value for an empty bin.

We apply our model proposed in Section I on the Intel
Berkeley network. To simplify the evaluation, we assume a
simple MA(1) model for measurement errors, that is to define� �� G �����~}����l� �h� K

. In addition, we use the first 10,000 data
points to train covariance matrix 8 , as these part of data
process is considered in steady-state. Figure 2 depicts sample
experiment results based on the multivariate data cleansing
model applied on a group of four sensors: motes 1, 2, 3 and
4. The bottom three curves of Figure 2 show the original
temperature traces of motes 1, 2 and 3, and the top curve
of Figure 2 shows not only the temperature trace of mote4 but
also the detected errors of mote4 with crossing marks. Figure
2 demonstrates that the correlation based data cleansing model
can identify erroneous data efficiently. In future study, we will
construct and examine quantitative evaluation metrics such as
false positive and false negative rates of the model.
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Fig. 2. Dirty Data Detection for Mote4

III. A PHASE-TRANSITION MODEL FOR SENSOR QUALITY

Based on dirty data identification at each sensor node, we
may construct a phase-transition model to rate the data quality
of a sensor by assigning “quality scores” for it over time. A
simple temporal phase-transition model is shown in Figure 3,
in which the data quality of a sensor node is rated as “good”,
“questionable”, and “bad”.

Good Questionable Bad

Fig. 3. A Sample Phase Transition Model for Sensor Quality States

State transition rules, therefore, can be constructed to con-
trol the quality rating at each sensor. For instance, some sample
state transition rules are: 1. If a sensor reports non-dirty data
for consecutive 5 minutes, then rate the sensor as in “good”
data quality state; 2. If a sensor reports two “dirty” data points
over the past 5 minutes, then rate the sensor as in “bad” data
quality state; 3. If none of the above two rules is satisfied,
then the sensor is rated as in “questionable” data quality state.
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