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Abstract—Wireless sensor networks fuse data from a multi-
plicity of sensors of different modalities and spatiotemporal
scales to provide information for reconnaissance, surveillance,
and situational awareness in many defense applications. For
decisions to be based on information returned by sensor
networks it is crucial that such information be of sustained
high quality. While the Quality of Information (QoI) depends
on many factors, perhaps the most crucial is the integrity of
the sensor data sources themselves. Even ignoring malicious
subversion, sensor data quality may be compromised by non-
malicious causes such as noise, drifts, calibration, and faults.
On-line detection and isolation of such misbehaviors is crucial
not only for assuring QoI delivered to the end-user, but also for
efficient operation and management by avoiding wasted energy
and bandwidth in carrying poor quality data and enabling
timely repair of sensors. We describe a two-tiered system for
on-line detection of sensor faults. A local tier running at
resource-constrained nodes uses an embedded model of the
physical world together with a hypothesis-testing detector to
identify potential faults in sensor measurements and notifies
a global tier. In turn, the global tier uses these notifications
on the one hand during fusion for more robust estimation
of physical world events of interest to the user, and on
the other hand for consistency checking among notifications
from various sensors and generating feedback to update the
embedded physical world model at the local nodes. Our system
eliminates the undesirable attributes of purely centralized and
purely distributed approaches that respectively suffer from high
resource consumption from sending all data to a sink, and high
false alarms due to lack of global knowledge. We demonstrate
the performance of our system on diverse real-life sensor faults
by using a modeling framework that permits injection of sensor
faults to study their impact on the application QoI.

I. INTRODUCTION

Recent sensor networks are potential of advancing our
knowledge about interesting features of phenomenon by
monitoring the physical world at unprecedented scales and
resolutions. However, for a sensor network to be useful, the
information it provides must be of high integrity. In typical
applications, a sensor network detects sources, reconstructs
physical fields, triggers other events, and communicates the

results to end users to estimate event of interest (E), and
make decisions based upon it. The decision making process
can go awry if the sensor network provides a misleading
picture of the physical phenomenon, some causes of which
are communication and environmental noise, faults in the
sensors, unfavorable channels from source to detectors
(e.g. obstacles) and insufficient sampling in time or space.
Although Quality of Information (QoI) in decision making
depends on many factors, sensor faults such as high noise,
drifts and calibration have perhaps the most crucial effect
on the integrity of sensor data. A sensor may misbehave
due to an inherent failure or due to an inappropriate
environmental condition [1], [2].
Recent increasing attention to QoI-aware systems in ap-
plications such as health monitoring and enemy activity
surveillance has been the strong motivation behind this
work. We have proposed a real-time on-line fault detection
system to maintain the high integrity.
Research on reliable computing and fault tolerant sys-
tems has established before emerging the wireless sensor
networks. An early example is [3], which studied fault
tolerance in measurements by a group of sensors in process
control applications. In [3], an abstract virtual sensor is
proposed that averages values from multiple fault-prone
sensors in a fault-tolerant fashion. The analysis in [3] as-
sumes that each sensor measures the same physical variable
with a certain uncertainty and fault specification. However,
studying faults in wireless sensing systems differs from
faults in process control, which makes the problem more
difficult. One of the most important issues is that sensor
networks may involve many more sensors over larger
areas and sensors don’t measure equal variables. Also,
for a sensor network the phenomenon being observed is
often not well defined and modeled, resulting in higher
uncertainty when modeling sensor behavior and sensor
faults.
In [4], an outlier detection method is presented which
is based on Bayesian learning. They have assumed that
conditional on the observed measurement, neighbors infor-
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mation and past information are independent, and with this
assumption, the procedure learns a distribution for interval
ranges of the measurements.
Fault detection can be done either in off-line or on-
line fashion. Due to increasing demand of recent sensor
network applications to real-time data management, we
have focused on on-line detection. On-line fault detection
and diagnosis are usually based on data quality analysis of
sensor measurements. These methods use statistical models
of sensor data and physical phenomenon, and leverage
correlations in space, time, and sensing modalities.
Most of the previous on-line detection mechanisms, such
as [5], use a centralized approach where the sink detects
faults based on statistical model built at the sink based on
the collected sensor data. The centralized quality check-
ing is certainly not an efficient approach for application
scenarios that only need to report the occurrence of some
events or the presence of some features to the end user.
Having to extract all the sensor samples to the back-end
for the purpose of fault detection will impose needless
energy overheads and also cause communication scalability
problems. On the other hand, distributed fault detection
approaches have been proposed in other works such as [6],
[7], [8]. Approach in [6] lacks the information from other
nodes that can help disambiguate faults from unexpected
phenomena. In [7], a distributed fault-tolerant detection
scheme has proposed which is based on the assumption
that time varying failure probabilities of each node are
known, and detection is based on threshold testing. In
a more recent work [8], authors proposed a distributed
fault detection system which is based on the techniques in
sequential analysis and sequential change point detection.
This scheme assumes that the probability distributions of
the data is computable which is not always the case in
general sensor network applications.
To satisfy the quality and cost constraints and consider their
tradeoffs, we have investigated a two-tiered system for on-
line detection of sensor faults. In this paper we propose a
two-tiered system for on-line fault detection, isolation and
possibly repair (FDIR) of it in wireless sensor networks
and study its positive impact on the network QoI .

II. TIERED ARCHITECTURE OVERVIEW

The proposed framework is illustrated in figure 1. Sensor
fault characterization is done at two tiers: a ”local tier”
and a ”global tier”. The local fault model is generic and
independent of the sensor modality. It is assumed that
the sampling frequency at an individual sensor is fast,
compare to the time constant of the “event of interest”.
Local FDIR exploits high frequency raw data available
from a sensor or a sensor array to classify the incoming

signal into one of pre-enumerated fault states. The local
model may also be able to repair a faulty signal. A
local fault model at the sensor level augments sensor
measurements yi(t), i = 1, 2, .. with a fault vector that
characterizes sensor behavior at the local level. A fault
vector is described as a 2-tuple: {fault state, fault signature
parameters}. It may have an additional attribute, namely
a reconciled value for the sensor signal. Additional fault
detection is performed at the global level exploiting the
spacial correlation and/or analytic redundancy between the
sensors. Information regarding misbehaving sensors (or bad
actors) is used by a fault aware fusion block to estimate the
event of interest. The estimated value is then fed to an ideal
sensor model that calculates the no-fault sensor reading.
This ideal sensor reading is fedback to the local FDIR
module for fault discrimination at the next computation
cycle. This information is then feedback to each sensor so
that they can correct themselves appropriately.

Fig. 1. The proposed two-tier framework for sensor fault detection

The framework defines a two-tier computational cycle—a
faster fault diagnostic cycle at the sensor level and a slower
data fusion cycle at the network level.
Continuous feedback from the global tier to the local
tier formulates a predictor-corrector scheme wherein (1)
a faulty sensor is progressively isolated (2) a fault-aware
fusion progressively discounts information provided by a
fault sensor; and (3) contributes positively towards network
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QoI. In the following subsections we describe the compo-
nents of the framework in detail.

A. Local Fault Detection and Characterization

The local sensor fault model assumes that measurand of
interest x(t) is an abstract or hidden variable, the presence
of which can be established only through the observable
variable y(t). We further assume that the model holds for
a small time window 0 ≤ t ≤ T . We further postulate
that for a non-faulty and accurate sensor, y(t) ≈ x(t)
over this window subject to measurement delays and noise
introduced within the transducers and digital conditioning
electronics. An estimate of ground truth for the measurand
is available only at t = 0. The relationship between
the hidden measurand and the observed sensor signal is
described using a first order linear model,

x(t+ 1) = Ax(t) +Bu(t) + ν(t)

y(t) = Cx(t) + ε(t)

0 ≤ t ≤ T, x(0) = x0, u(t) = 1 ∀t.
(1)

Qualitatively, this formulation can be described as follows:
over a time window T , we assume that the sensor responds
to changes in the measurand x according to a linear
dynamical model. The dynamics of the transducer response
model is determined by A, while ν ∼ N(0, Q) indicates
the noise introduced in the transducer. B 6= 0 is indicative
of bias introduced in the sensor. C is the calibration or
the gain factor. Finally, ε ∼ N(0, R) signifies the noise
introduced by the sensor electronics.
A sensor is said to misbehave when the signal it provides to
a network y(t) does not reflect the measurand of interest
x(t). The larger is the deviation, the less reliable is the
information provided by that sensor and thus should be
discounted from a network fusion point-of-view. A fault
vector is a mathematical characterization of this misbe-
havior. We further categorize the misbehavior into finite
number of fault states, each of which is characterized using
a parametric fault signature. Let θ and FS(p) denote the
fault state and the fault signature respectively. We use the
notation θ0, θ1, θ2, . . . , θ∗ to denote the finite set of fault
states such that θ0 denotes a no-fault normal state for the
sensor and θ∗ denotes an unknown state for the sensor and
θ1, θ2, ... are the defined fault states in table I. Ω denotes
the complete sensor fault set. At any given time, the ith
sensor can be in θ ∈ Ω state.
Combining equation (1) with the concept of a fault signa-
ture FS(p), we note that: p ⇐⇒ {A,B,C,Q,R}, and θk

are labeled regions in this 5-dimensional parameter space.
A sensor with no fault is defined as the one that responds
to the measurand with a well defined time constant, well
defined transducer noise and bias. Under these conditions,

the response signal will contain noise induced because of
the electronics. That is,

θ0 : p0 ⇐⇒ {A0, B0, C0, Q0, R0}
al < A0 < au; bl < B0 < bu; cl < C0 < cu;

ql < Q0 < qu; rl < R0 < ru

(2)

defines baseline values for no-fault sensor. Algorithmically,
baseline values p0 are established using no-fault data and
the upper bound and lower bound thresholds are expressed
as an acceptable bounds for the specific application. For
any new set of measurements from sensors, the first step
of the fault detection is to estimate the parameters of the
proposed linear model in (1). Table I enumerates the misbe-
havior categories, namely θk and corresponding estimation
and hypothesis testing steps. The proposed framework
specifies that the local diagnosis module performs the
basic task of fault state identification and fault signature
estimation.
To make the estimate process easier, for any θ, we can par-
tition p as {pa; pu} where pa denotes assumed parameters
and pu denotes unknown parameters for which we have
an expectation given the fault state. Clearly, one needs to
estimate pu given a series of y(t), 0 ≤ t ≤ T , pa and x0.
Conversely, given θk ↔ pu for k = 0, 1, 2, . . . one can
perform a series of estimations for each of the fault states.
The error from each of these estimation can then be used as
a basis for hypothesis testing. That is, the θ that gives the
minimum error is the most likely fault state for the sensor.
For completion as a candidate algorithm, we define this
problem as a generic least squares minimization problem.

TABLE I
ENUMERATION OF MISBEHAVIOR AT EACH SENSOR LEVEL

Fault State pa pu Hypothesis
θ0, Normal A = A0, B = B0, C = C0, Q = Q0 R rl < R < ru

θ1, Noisy A = A0, B = B0, C = C0, R = R0 Q Q > qu

θ2, Frozen A = A0, B = B0, C = C0, R = R0 Q Q < ql

θ3, Saturation A = A0, B = B0, Q = Q0, R = R0 C C 6= [cl, cu]

θ4, Bias A = A0, C = C0, Q = Q0, R = R0 B |B| > bu

θ5, Spike B = B0, C = C0, Q = Q0, R = R0 A |A| > au

θ6, Oscillation B = B0, C = C0, Q = Q0, R = R0 A |A| � au

θ∗, Unknown None of the above

min
T∑
i

(y(i)− ȳ(i))2

where:x(t+ 1) = Ax(t) +Bu(t) + ν(t)

ȳ(t) = Cx(t) + ε(t), 0 ≤ t ≤ T
x(0) = x0, u(t) = 1 ∀t

such that : p ⇐⇒ {A,B,C,Q,R} = {pa; pu}
pa, given.

(3)

3



It is easy to envision that sophisticated algorithm can
generate a reconciled value ŷi(t) for the ith sensor as a side
effect of its calculation. To handle this case, we augment
the fault vector to include this reconciled value, if available.
To summarize, we have formulated the local sensor fault
characterization as (1) an estimation step, (2) hypothesis
testing step and (3) a decision making step wherein we
select the most appropriate hypothesis based on the esti-
mation error. It goes without saying that the linear dynamic
model (equation 1) is the basis for this analysis.
Mathematically, the local fault characterization module
defines an operator A or algorithm at each sensor level
that operates on the raw sensor signal from the ith sensor
and produces the following outputs. Note that the sensor
generates these outputs (fault vector) once over T time
interval.

1) Sensor Fault state, θ̂ ∈ Ω
2) Fault Signature parameters, p̂ for the corresponding

signature FS
3) (optional) A corrected or reconciled signal value

ỹi(t)
Now we can formally define the two forms of the fault
vector.

fv(kT ) = {θ, p, ∅} or {θ, p, ŷ}, k = 1, 2, . . . (4)

B. Global Fault Detection

The local decisions or raw data (with possible lower
sampling rates), augmented with the fault vectors will be
send to the global tier. The global tier has the network-wide
view of the data. It uses spatio-temporal correlations and
also sample redundancies (for dense network topologies)
to validate the fault detections at local tiers. As we have
assumed that in our applications only small ratio of sensors
can face faulty behaviors, in the case of detection of
similar behavior from highly correlated sensors, global
tier will consider it as an abrupt environmental change
instead of faulty behavior. Since with the only local view
of the measurements at sensors we can not distinguish
between a sensor fault and an unexpected variation in the
phenomena, a global fault detector is crucial to validate the
fault notifications from local tiers.

C. Fault-aware Fusion

The previous section described a formulation for augment-
ing the signal from ith sensor with a fault vector. In
this section, we describe a formulation wherein a network
fusion algorithm can utilize faulty behavior information.
It is clear that, sensor faults can significantly affect the
accuracy of the fusion results.
Let E be an appropriate description for the “event of
interest”. In an abstract sense, data fusion can be defined

as an operator F that takes the signals yi(t), i = 1, 2, . . . N
provided by N sensors to generate E. For the sake of
completeness, we may say fusion generates E(t), t > 0.
Symbolically, we can write the fusion as equation (6). One
must note that the equation is not a mathematically precise
definition considering asynchronous yi signals.
Our objective is to propose a new operator F ′ when the
ith sensor provides a fault vector every T units of time in
addition to the raw signal yi. Although we are investigating
more advanced fusion schemes, for the purpose of this
work we have started with a simple fault aware fusion
based on averaging. In this work, event of interest is
characterized by averaging various signals. The weights
given to individual signals may depend on the reliability
of the sensor (weighted averages) or ignorance of a sensor
(Dempster-Shafer). Normalization of the signals to make
them consistent is a pre-requisite.
The ith sensor has provided a fault vector {θ, p} in addition
to the raw signal yi at time t. We define a function d : Ω→
[0, 1] such that:

d(θ ∈ Ω) =
{

1 include ith sensor
0 exclude ith sensor

(5)

We include the ith sensor in the fusion depending on the
fault state identified for the sensor. A simple approach
could be d = 1 ⇔ θ = θ0. If and only if the local
fault diagnosis algorithm declares that the ith sensor is
normal, we include it in the fusion, else we ignore it. This
decision making represents an extreme choice among those
available. In fact, one may argue why bother enumerating
various θ if the fusion is not utilizing this information.
Conversely, the motivation behind defining a Ω set and all
the discussion presented in §II-A is to allow partial usage
of the information and minimize making such extreme
decisions. This is where having fault signature helps. In
our future more advanced fault aware fusion schemes, we
will use this extra information. Moreover, the discussion
in subsection II-E shows how we can benefit from this
information to model the faulty behavior of the sensors in
the network over time.

D. Ideal Sensor Model

A sensor model is an idealized model that describes how a
specific modality responds to an event E. In other words,
this model establishes what the ground truth should be
for the estimated Ê. The main assumption here is that
phenomena and event of interest are not fast changing.
Clearly, the model will be specific to a sensor modality.
The ground truth may be conditioned or corrected for the
actual geo-spatial location of the sensor or the appropriate
engineering units. In our framework, this module provides
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the appropriate x0 for all sensors for the next cycle of fault
detection. As shown by the block labeled 5 in figure 1, we
can model it as following:

Ê(t) = F(yi(t), θk,i(t))), t > 0 (6)

x0,i(t+ 1) = S(Ê(t)), t > 0 (7)

E. Network Fault Localization and Isolation

In this section, we outline a scheme for localizing the
sensor fault in a sensor network and possibly isolation
of those faults. Fault localization should not be confused
with fault isolation. Fault isolation identifies the root cause
of a sensor misbehavior. Fault isolation requires in-depth
knowledge of the sensor internals which is not commonly
known to an end user. Localization, on the other hand,
identifies a sensor that may be misbehaving without pro-
viding a root cause. In most cases, localizing the problem
helps the sensor manufacturer as well as the user to triage
between a replace or a repair action. Often the localization
is succeeded by troubleshooting procedure (manual or an
automated test equipment), which quickly narrows down
the root cause to make this decision.
We propose a simple fault localization scheme based on
sequences of fault vector being generated by the ith sensor
at each time interval T . That is, out starting point is a
sequence of {θ, p}, the proposed localization logic anno-
tates the sensor misbehavior to assist the replace/repair
decision. Misbehavior at the ith sensor is annotated as
persistent or intermittent depending on duration of the fault.
A persistent fault remains forever till a repair or replace
action is performed. That is when the ith sensor enters
a θk state, it remains there forever. An intermittent fault,
on the other hand, switches between θk, k > 0 and θ0
fault states. This gives us a simple logic to classify the
sequence of {θ, p} as intermittent or persistent fault. The
annotation progressive is used to indicate the progression
of the misbehavior over time. That is for any θk, k 6= 0,
we monitor p over successive visits to this same state.
Progressive behavior is indicated either as a monotonic
uptrend or downtrend in the estimated p values.

III. APPLICATION

In the next two subsections, we describe two application
examples to demonstrate the effectiveness of the proposed
framework for fault detection and study the impact of
sensor faults on a pre-defined QoI metric for the network.

A. Acoustic Event Detection

In this application, the affect of fault detection and event
detection coupling is studied. The scenario parameters are
listed in table II.

TABLE II
ACOUSTIC SOURCE APPLICATION SCENARIO PARAMETERS

Source or Ground Truth
Event signal, E∗(t) 50, 0 ≤ t ≤ 10

Event location (2, 2)
Simulation period 0 ≤ t ≤ 100

Event occurrence times [20, 30], [70, 80], [90, 100]
Received signal at kth sensor, Ek(t) akE

∗(t− τk) + nk(t)
Attenuation, ak 1/(1 + d2

k)
Propagation Delay, τk dk/ν (ν = 344m/s)

Noise nk(t)
Network Characteristics

Model update period, T 1
Sampling period, 0.05
Sensor numbers 4
Sensor locations (1, 1), (5, 1), (5, 5), (1, 5)

Noise Var.σsk 1, ∀k
Fault Characteristics

Faulty sensor ID 1
Type Multiplicative bias

Signature 0.5

Location of sensors, source and source signal are known
while the time of event occurrence is unknown. In the
specific studied scenario, we have assumed one of the worst
cases where the closest sensor to the event has a multi-
plicative bias of less than one (0.5). A local tier running
at nodes uses a Bayesian event detection hypothesis test
along a local fault detector.
At each T , local tier detects faults by checking the esti-
mated parameters with their acceptable bounds, as figure
2 shows, for sensor 1, parameter B doesn’t stay in the
acceptable bound, which shows the presence of fault at it.

Fig. 2. Trace of model coefficients

After each T , global tier receives local detection decisions
along with fault notification. Global tier cross validates the
fault notifications and removes the faulty sensors from the
process of event detection for that time frame. In global
fusion of event detection different sensors have different
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weights, the closer sensors have higher weights in fusion.
The global fault detector uses the fault notifications and
also distance information to make a more robust final
decision on event detection. In the simple fault-aware
fusion that we have selected for this work, the sensor which
is considered as a faulty is not considered in fusion process.
If S is a set of all the non-faulty sensors then the global
decision from the fusion process will be event occurrence
if the following threshold test is satisfied,∑

sk∈S
(
Ik
d2

k

) ≥
∑
sk∈S

(
0.5
d2

k

) (8)

where Ik ∈ {0, 1} is the local decision on event occurrence
from the non-faulty kth sensor, and dk is the relative
distance of the kth sensor to the event location.
Final decision which is either event occurrence or no event
occurrence will be sent to ideal sensor models to estimate
the ground truth for the local tiers. Sensor model in this
case has used the propagation model of the acoustic signal,
as it is shown in table II to estimate the initial state of the
local models for the next cycle of fault detection. In the
case of no event occurrence decision in global decision,
noise is the only received signal at the sensor locations and
the estimate of x0 = 0 will be sent to the local sensors.
In the case of event occurrence decision, having the signal
of the event E∗(t) and ideal sensor model, system can
estimate the value of the received signal at place of the
kth sensor (Ek(t)).
As figure 3 shows for the whole scenario period (100 time
units), event occurs 3 times. Figure 3 shows that our two-
tiered architecture has efficiently improved the event de-
tection at presence of fault and it showed that without that
there is more chance to make wrong decisions due to faulty
data from sensors with misbehavior. Figure 3 compares
results of event detection with no fault detection with the
event detection which is capable of fault detection. In this
specific example, the multiplicative bias has attenuated the
signal of the sensor 1, which results in missing the event.

Fig. 3. comparing decisions for different cases

B. Hot Spot Intensity Estimation

In this application, the affect of fault detection and event
intensity estimation is studied. The scenario parameters are
listed in table III.

Location of sensors, source and source signal are known
while the intensity of a hotspot is unknown. The location
of the hotspot is known and the sensors are immobile.
Figure 4(A) depicts the layout of the temperature sensors.
A total of 10 sensors are used. Figure 4(B) shows the
ground truth for the event of interest Etruth, namely the
intensity of the hotspot as it evolves in time.

TABLE III
HOT SPOT APPLICATION PARAMETERS

Ground Truth
Hot spot intensity,E∗(t) 200 + 300(1− e−t/3)

Hot spot location (0, 0)
Simulation period 0 ≤ t ≤ 80

Propagation model Tdiff = (Thot − Tamb)−
log(Tdiff )/(d2

k + e2k)
Network Characteristics

Sensor number 10
Sensor locations (−5, 27), (−10, 18), (4, 22), (17, 14)

(−24,−9), (−27, 10), (−15, 13), (25, 9),
(−30, 0), (12, 21)

Noise Var.σsk 1, ∀k
Fault Characteristics

Faulty sensor ID 3
Type Additive bias

Signature −4◦C, 30 < t < 50

Fig. 4. (A): Sensor layout (B): The ground truth

Our task is to generates estimates for the hotspot intensity
Ê using the sensor network, once every minute. The fault
aware fusion function F is a 2D lookup table—which maps
the hotspot temperature with the average value provided
by all sensors in the network at time T . If the ith sensor
was detected to be misbehaving, we did not use it in
the average calculation. The ideal no-fault sensor model
S = F−1 and hence the same x0 is fedback from the global
tier to each local sensor FDIR model. The local FDIR
model parameters are calculated using 10 samples within
each 1 minute window. p0 parameters are established using
measurements within the first 7 minutes.
Figure 5 shows the trace of the model parameter B. It
clearly shows that the ”sensor bias” fault hypothesis is
established between 30− 50 minutes. Figure 6 shows that
the two-tier sensor FDIR framework consistently produces
less estimation error and consequently higher network QoI.
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Fig. 5. Trace of model coefficient B

Fig. 6. Ground truth estimation error with and without sensor FDIR

To show the impact on network QoI and effectiveness of the
proposed approach, we calculated traces of Ê under three
conditions: no sensor FDI present, two-tier based sensor
FDI and ideal sensor FDI (since we know the time period
when the sensor is biased).

IV. CONCLUSIONS

The work presented in this paper, proposes a tiered fault
detection system which detects faults in an online fashion.
Tiered architecture of the proposed system makes it both
effective in presence of faults and cost efficient. This
system follows a sequence of repeating steps: fault analysis
at the local sensor level to generate a fault vector; fault de-
tection at global level that uses spatial correlation between
sensors to distinguish faults from abrupt changes in the
environment; global level fusion that uses faulty behavior
information of the sensors to generate a robust estimate for
the event of interest; the event estimate feeds back to an
ideal sensor model to generate a reference signal (an instant
of ground truth) for the ith sensor; this reference signal
is used by the fault analysis algorithm in its next update
cycle. The continual feedback of an estimated measure
of ground truth helps to increase the confidence of fault
localization with time. Better fault characterization at the

local level, will result in smarter fault-aware fusion rules
at the network level, which in turn allows accurate ground
truth estimation. This sequential approach will result not
only in accurate fault localization in a sensor network, but
also increasing the network QoI by systematically ignoring
the information provided by misbehaving sensors.
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